33,162 research outputs found

    Geometric study of Lagrangian and Eulerian structures in turbulent channel flow

    Get PDF
    We report the detailed multi-scale and multi-directional geometric study of both evolving Lagrangian and instantaneous Eulerian structures in turbulent channel flow at low and moderate Reynolds numbers. The Lagrangian structures (material surfaces) are obtained by tracking the Lagrangian scalar field, and Eulerian structures are extracted from the swirling strength field at a time instant. The multi-scale and multi-directional geometric analysis, based on the mirror-extended curvelet transform, is developed to quantify the geometry, including the averaged inclination and sweep angles, of both structures at up to eight scales ranging from the half-height δ of the channel to several viscous length scales δ_ν. Here, the inclination angle is on the plane of the streamwise and wall-normal directions, and the sweep angle is on the plane of streamwise and spanwise directions. The results show that coherent quasi-streamwise structures in the near-wall region are composed of inclined objects with averaged inclination angle 35°–45°, averaged sweep angle 30°–40° and characteristic scale 20δ_ν, and 'curved legs' with averaged inclination angle 20°–30°, averaged sweep angle 15°–30° and length scale 5δ_ν–10δ_ν. The temporal evolution of Lagrangian structures shows increasing inclination and sweep angles with time, which may correspond to the lifting process of near-wall quasi-streamwise vortices. The large-scale structures that appear to be composed of a number of individual small-scale objects are detected using cross-correlations between Eulerian structures with large and small scales. These packets are located at the near-wall region with the typical height 0.25δ and may extend over 10δ in the streamwise direction in moderate-Reynolds-number, long channel flows. In addition, the effects of the Reynolds number and comparisons between Lagrangian and Eulerian structures are discussed

    Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows

    Get PDF
    In order to investigate continuous vortex dynamics based on a Lagrangian-like formulation, we develop a theoretical framework and a numerical method for computation of the evolution of a vortex-surface field (VSF) in viscous incompressible flows with simple topology and geometry. Equations describing the continuous, timewise evolution of a VSF from an existing VSF at an initial time are first reviewed. Non-uniqueness in this formulation is resolved by the introduction of a pseudo-time and a corresponding pseudo-evolution in which the evolved field is ‘advected’ by frozen vorticity onto a VSF. A weighted essentially non-oscillatory (WENO) method is used to solve the pseudo-evolution equations in pseudo-time, providing a dissipative-like regularization. Vortex surfaces are then extracted as iso-surfaces of the VSFs at different real physical times. The method is applied to two viscous flows with Taylor–Green and Kida–Pelz initial conditions respectively. Results show the collapse of vortex surfaces, vortex reconnection, the formation and roll-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes, and vortex stretching and twisting. A possible scenario for understanding the transition from a smooth laminar flow to turbulent flow in terms of topology of vortex surfaces is discussed
    corecore